Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
4.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1699203

RESUMEN

Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases.


Asunto(s)
COVID-19/terapia , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , Tratamiento con ARN de Interferencia/métodos , Animales , COVID-19/epidemiología , COVID-19/virología , Humanos , Modelos Genéticos , Nanopartículas/química , Pandemias/prevención & control , ARN Interferente Pequeño/química , ARN Interferente Pequeño/genética , SARS-CoV-2/fisiología
5.
Curr Opin Pharmacol ; 54: 121-129, 2020 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1064979

RESUMEN

Gene silencing induced by RNAi represents a promising antiviral development strategy. This review will summarise the current state of RNAi therapeutics for treating acute and chronic human virus infections. The gene silencing pathways exploited by RNAi therapeutics will be described and include both classic RNAi, inducing cytoplasmic mRNA degradation post-transcription and novel RNAi, mediating epigenetic modifications at the transcription level in the nucleus. Finally, the challenge of delivering gene modifications via RNAi will be discussed, along with the unique characteristics of respiratory versus systemic administration routes to highlight recent advances and future potential of RNAi antiviral treatment strategies.


Asunto(s)
Tratamiento con ARN de Interferencia , Virosis/terapia , Enfermedad Aguda , Animales , Enfermedad Crónica , Humanos , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA